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We propose and study a one-dimensional traffic flow cellular automaton model of high-speed vehicles with
the Fukui-Ishibashi-type acceleration for all cars, and the Nagel-Schreckenber§)pstochastic delay only
for cars following the trail of the car ahead. The main difference in the delay scenario between our model and
the NS model is that a car with spacing ahead longer than the velocity Mmmitay not be delayed in our
model. By using a car-oriented mean-field theory, we analytically derive fundamental diagrams of the average
speed as a function of the car density. Our theoretical results are in excellent agreement with numerical

simulations.
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. INTRODUCTION empty sites in front of thath car at timet, andv,,(t) be the

i number of sites that theth car moves during the tintestep.
Traffic flow cellular automaton(CA) models have at-  oyr model adopts the following acceleration r{#.

tracted much interest recently. Compargad with other dynam!- Step 1 v/ (t)=min(C,(t),M). We call thenth car “a car

cal approaches, e.g., the fluid dynamical approach, to th'gwat follows the trail of the car ahead” if(t) = C.(t). This

class of problems, CA models are conceptually simpler, an AL

can be easily implemented on computers for numerical inM&ans that theth car may become the neighbor of the car

vestigationd1—4]. ghead if the car in front stops. Sto_chasnc delay is !ntroduqed
Two popular one-dimensiondlLD) traffic flow models N such a way that all the cars which follow the tl’al|. of their

are the Fukui-IshibashiFl) model [5] and the Nagel- cars ahead have a probabilftyo move forward one site less

SchreckenbergNS) model[6]. An exact car-oriented mean- than it is allowed by step 1, i.e., we have the following.

field (COMF) theory has been developed for the FI model, Step 2 v,(t)=v,(t)—1, with the probabilityf, if v/(t)

with an arbitrary limit on the maximum speed,.,, car den-  =C(t) andv,(t)>0.
sity p, and delay probabilityf [7,8]. However, for the NS Step 3 The nth car moves ,(t) sites ahead.
model with high-speed vehicles (,,>1) and stochastic de- The number of empty sites in front of tmh car at time

lay, to our knowledge there has been no established exact# 1 can be written as
analytical theory up to noy9,10].

The acceleration and stochastic delay rules of the NS
model lead to complications in the time evolution of the
flow, and hence it is very difficult for exact analytical stud-
ies. In order to understand how these rules affect the evolu=0r our model, with a maximum car velocity,,,=M and a
tion and the corresponding asymptotic state, we study a 1[Stochastic delay probabilitf; the velocity of thenth car at
traffic flow CA model in which only the cars following the time stept as a function of the intercar spacif(t) can be
trail of the car ahead may be delayed. written as

The plan of the present paper is as follows. The definition
of th_e model qnd the evolution equations for the inter_car va(H)=Fy[f,Cn(1)] 2)
spacings are given in Sec. Il. In Sec. lll some observations
are made to describe the steady state of the system. In Sec
IV, we present the fundamental diagrams for the Iow—car-Where
density case with an arbitrary vehicle speed limit, and the
high density case with vehicle speeds limited to 1 and 2. Fy(f,C)
Excellent agreements between numerical simulations and

Cr(t+1)=Cn(t) +vn4a(t) —vn(t). Y

theoretical results are shown in Sec. V, together with a dis- M if C>M
cussion of our results in connection to the FI and NS models. _ C-1 \ith probability f f 0<C=M
II. MODEL C  with probability 1—f
Let N be the total number of cars on a 1D road of length 0 it C=0.
L. The density of cars is=N/L. Let C,(t) be the number of 3
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IlI. INTERCAR SPACINGS IN THE STEADY STATES ability for the spacing to be shortened by 3 is{L)Py_3
+fPy_», and so on. The probability for the spacing to be
shortened byM —1 is (1-f)P,+fP,, and the probability
for the spacing to be shortened Wis Py+fP;. On aver-
age, a long spacing will be shortened by

From Egs.(1)—(3), we can derive the properties of the
intercar spacings in the steady states. Gi@Gg/it)<M +1,
it follows that C,(t)—Fu[C,(t)]<1, and from
FulChi1(D) =M, we obtain  C,(t+1)=C,(t)

—FulCr(O)]+FulChr1(t) =M +1. Therefore, if an inter- M-1
car spacing is not larger thav+ 1, it will not be larger than MPo+ z [(L-F)(M=D)+f(M—i+1)]P;+ Py,
M +1 as the system evolves. =1
GivenC,(t)=M +1, it follows thatF [ C,(t)]=M, and M-1
from Fy[Chi1()]SM  we have C,(t+1)=C,(t) =MPy+ 2, (M—i+f)P+fPy, (6)
—FulCh()]+FulChr1(t)]=C,(t). Therefore, intercar =1

spacings which are larger than or equaMot 1 will never ] . N
increase, i.e., iC,(t)=M+1, thenC, . ;(t)<C,(t). in one time step. The shortened length is positive, unless

It is useful to define the long and short intercar spacings’o=P1=P>=---Py_1=Py=0, i.e., S=0. Therefore, in
via their comparison with the maximum car speldd An  the asymptotic steady state of the systémand S will no

intercar spacing is called a long spacing if it is longer thanlonger change, and at least one of them becomes zero.
M+1, i.e., C,(t)>M+1. An intercar spacing is called a Hence, it is not possible for long and short spacings to co-

short spacing if it is shorter thal + 1, i.e.,C,(t)<M+1.  €xistin the asymptotic steady state.
Based on the above definitions, we can define the excessive

length of a long spacing,(t) and the deficient length of a IV. ANALYTICAL SOLUTION OF ASYMPTOTIC
short spacinds,(t) as VELOCITY
L,(t)=max C,(t)—(M+1),0] For the low-car-density cage<1/(M +2)], it is appar-
ent that in the asymptotic steady state>0 and S=0.
and Hence
Sh(t)y=max{ (M +1)—-C(1),0]. Cy(t)=M+1, Vn. (7)

It follows that the sum of the excessive lengths of all longin this case, stochastic delay will no longer occur, and all the
spacingsL(t) and the sum of deficient lengths of all short cars will move forward with a maximum spe&dl The av-
spacingsS(t) are given, respectively, by erage car speed of traffic flow is

V(t—o))=M. (8)
L)=2 La(t), SH=2 Sy(1). < )

3 : For the high-car-density cagp>1/(M +2)], it is appar-
From these definitions, it can be proven readily that €Nt thatin the asymptotic steady st&e 0 andL=0. Hence

Cy(t)sM+1, Vn. (9)

L()—S(t)=>, [Ch(t)—(M+1)]=L—(M+2)=const.
n The length of every intercar spacing cannot be larger than

(4) M+ 1. Therefore, the average speed of traffic flow in the

From these properties of the intercar spacings, we havgsymptonc steady state is
L (t+1)<L,(t). Hence M
L(t+1)=<Lv). ) (V(t—>oo)):i21 PLi(1=f)+(i—1)f]+MPy,,

From Egs.(4) and(5), we haveS(t+1)<S(t). ThereforeL M _
andSwill never increase as the system evolves. If one of the 221 Pi(i—=f)+MPy 4 (10
L, decreases, theln and S will have to decrease.

Next we look into the question of whether long and short
spacings may coexist in an asymptotic steady stateN|(&} A vpa=M=1
be the number of intercar spacings with lengthat timet. In this case, the high density case referspte1/3, and
The probability of finding such a spacing at tihés Pi(t)  nenceP,=0, V n=3. This implies that only?,, P,, andP,
=N;(t)/N. Hereafter,Pi(t) is denoted byp; for simplicity,  are nonzero. To obtain the nonvanishiRg, we introduce
except if specified otherwise. Suppose that long and shomiﬂ_ to describe the number of intercar spacings with a
spacings coexist. Consider a long spacing; if the car ahea(gdr.,am‘:]e in length from at timet to j at time t+1. The
moves forward byn— 1 sites, then the spacing will decrease probability of finding an intercar spacing with lengthat

by 1. The probability for this to occur is (1f)Pu-1  timetand lengthj at imet+1 is
+fPy, . For the same reason, the probability for the spacing

to be shortened by 2 is (Af)Py,_»+fPy_1, and the prob- Wi_j()=N;_;(t)/N. (11
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From Egs.(1)—(3), we can write all the nonzerd/;_,; as Substituting the expressions fav;_,; into the above three

equations, we obtain

Wo_.1=Po[(1=F)P1+P5],
PoP,=f(1—f)P2. (13
W0H2:01
Normalization requires tha&,, P, andP, satisfy the equa-
W]_*}O:Pl[(l_f)Po+f(1_f)P1], tionS
Wiz = Palf(A=0)Py 1], > Pi=Py+Pi+P,=1 (14)
|

W,_0=0,
and
W,_ =P, (Py+1Py).
For[i—j[=3, W;_;=0. 2 iP=Py+2P,=C=1jp—1. (19
When the system approaches its asymptotic steady state,
all the P; is cease to change. So the following detailed bal- From Eqgs.(13)—(15), we obtain a quadratic equation for

ance condition for the steady state holds: Po.
Sw.o-Sw. . vm (12 (2f—1)2P3+[(2f—1)%(C—2)+1]Py—f(1—f)(C—2)?
i#m i#m

=0, (16)
When m is equal to 0, 1, and 2, three detailed balance ith it t qi b
equations can be written as with Its root given by

Wo 1+ Wo =Wy o+ W, o,  —[(2f-1)%C-2)+1]+(2f—1)%C-2)C+1
Po= - .
2(2f—1)
Wy og+W; =Wy 1 +W, 4, (17)
Wy g+W,o_ 1 =Wo_o+W;_5. Hence, the asymptotic average speed of traffic flow is
|
_ 1 —
C+ m[\/(2f—1)2(c:—2)cJr 1-1]
(V(t—)) = 5
2f—1)2(p—1)(3p—1
_1+\/1+< )(p=1)(3p—1)
) o’ 18
AN 2f—1 ' (18)
|
For f=1/2, which is an removable singular point, Wy _.3=0,
(V(t—))y=Cl2=(1lp—1)/2. (19 Wi _o=P[(1—f)Po+f(1—f)P,],

Equations(18) and(19) give the asymptoti¢V(t—=)) as a W, =P {f(1—f)P+[f2+ (1—1)2]P,+(1—f)P3},
function off andp in the high density case withl =1.
Wi_3=P[(1-f)P,+fP3],
B. vmax=M=2
In this casep=1/4, henceP,=0, V¥ n=4. This implies
that only Py, P,, P,, andP; are nonzero. From Eq¢l)—
(3), we can write the nonzerd/;_; as

W5 0=Po[(1=f)Po+f(1—-1)P4],
W, 1 =P {fPy+[f2+(1—1)2]P,+(1—f)P,},
Wo_1=Po[(1=f)P1+fP;], W, 3=P,[f(1—f)P,+fPg],
Wo_2=Pol(1—f)P2+ Pa], W;_0=0,
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FIG. 1. The fundamental diagram with the maximum car veloc-

ity M=1 and for different stochastic delay probabilite3he solid
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FIG. 2. The fundamental diagram with the maximum car veloc-
ity M =2 and for different stochastic delay probabilitie3he solid

curves are theoretical results. The points with different symbolscurves are theoretical results. The points with different symbols
represent results of numerical simulations. The curves from the topepresent numerical simulations. The curves from the top down
down along the velocity axis correspond to different valued of along the velocity axis correspond to different values odinging

ranging fromf=0 to 1, in steps of 0.1.

W3, 1=P3(Po+fPy),

W;_,=P3[(1-f)P1+fP;].

Substituting the above expressions into the detailed balance
condition in Eqg.(12), we obtain the following set of four

equations:
fPoP,+ PoP3— f(1—f)P2—f(1—f)P,P,=0, (20

2fPoP,+ PoPy—2f(1—f)P2—f(1—f)P,P,

—(1-f)P,P3+f(1—f)P2=0, (21)

fPoP,— PoPs— f(1—f)P2+f(1—f)P,P,—2(1—f)P,P4

+2f(1-f)P3=0, (22

PoP3—f(1—f)P P+ (1—f)P,Ps—f(1—f)P3=0.
(23)

Note that only two of these, e.g., EqR0) and (23), are
independent. Combining Eq&0) and(23) with the normal-
ization conditions

> Pi=Py+P+Py+Py=1 (24)
|

and

> iP;=P;+2P,+3P;=C=1/p—1,

(25

from f=0 to 1 in steps of 0.1.

we can solve forP,, P;, P,, and P5, and obtain the
asymptotic traffic flow velocity foM=2.

V. DISCUSSION

In order to compare with the analytical results, we carried
out numerical simulations on a 1D chain with 1000 cars. The
length of the chain was adjusted so as to give the desired car
density. Periodic boundary condition was imposed. The first
20000 time steps were excluded from the averaging proce-
dure so as to remove the transient behavior. The averages
were taken over the next 80000 time steps. Figures 1 and 2
show a comparison between results obtained from numerical
simulations and our mean field theory for the casedviof
=1 and 2 over the entire range of densityThe curves are
theoretical results, while the symbols represent results of nu-
merical simulations. The curves from the top down along the
velocity axis correspond to different valuesfainging from
0 to 1. Excellent agreement between simulations and our
theory is found.

From the fundamental diagrams of our model, it is noted
that when the car density is low enough=<1/(M +2)], all
the intercar spacings will not be shorter thint-1, and all
the cars will not be delayed, leading to traffic flow in its
maximum velocity =M). This situation is more realistic
in that, in real traffic, no driver would tend to slow down his
car when it is far away from the car ahead. In the high
density case, the stochastic delay in our model represents
better safety than that of the FI model, and leads to a much
higher asymptotic average velocity of traffic flow than that in
the NS model.

In summary, we introduced a model with stochastic de-
lays for cars following the trail of the car ahead. Its evolution
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