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Cellular automaton traffic flow model between the Fukui-Ishibashi
and Nagel-Schreckenberg models
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We propose and study a one-dimensional traffic flow cellular automaton model of high-speed vehicles with
the Fukui-Ishibashi-type acceleration for all cars, and the Nagel-Schreckenberg-type~NS! stochastic delay only
for cars following the trail of the car ahead. The main difference in the delay scenario between our model and
the NS model is that a car with spacing ahead longer than the velocity limitM may not be delayed in our
model. By using a car-oriented mean-field theory, we analytically derive fundamental diagrams of the average
speed as a function of the car density. Our theoretical results are in excellent agreement with numerical
simulations.
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I. INTRODUCTION

Traffic flow cellular automaton~CA! models have at-
tracted much interest recently. Compared with other dyna
cal approaches, e.g., the fluid dynamical approach, to
class of problems, CA models are conceptually simpler,
can be easily implemented on computers for numerical
vestigations@1–4#.

Two popular one-dimensional~1D! traffic flow models
are the Fukui-Ishibashi~FI! model @5# and the Nagel-
Schreckenberg~NS! model@6#. An exact car-oriented mean
field ~COMF! theory has been developed for the FI mod
with an arbitrary limit on the maximum speedvmax, car den-
sity r, and delay probabilityf @7,8#. However, for the NS
model with high-speed vehicles (vmax.1) and stochastic de
lay, to our knowledge there has been no established e
analytical theory up to now@9,10#.

The acceleration and stochastic delay rules of the
model lead to complications in the time evolution of t
flow, and hence it is very difficult for exact analytical stu
ies. In order to understand how these rules affect the ev
tion and the corresponding asymptotic state, we study a
traffic flow CA model in which only the cars following th
trail of the car ahead may be delayed.

The plan of the present paper is as follows. The definit
of the model and the evolution equations for the inter
spacings are given in Sec. II. In Sec. III some observati
are made to describe the steady state of the system. In
IV, we present the fundamental diagrams for the low-c
density case with an arbitrary vehicle speed limit, and
high density case with vehicle speeds limited to 1 and
Excellent agreements between numerical simulations
theoretical results are shown in Sec. V, together with a
cussion of our results in connection to the FI and NS mod

II. MODEL

Let N be the total number of cars on a 1D road of leng
L. The density of cars isr5N/L. Let Cn(t) be the number of
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empty sites in front of thenth car at timet, andvn(t) be the
number of sites that thenth car moves during the timet step.
Our model adopts the following acceleration rule@5#.

Step 1: vn8(t)5min(Cn(t),M). We call thenth car ‘‘a car
that follows the trail of the car ahead’’ ifvn8(t)5Cn(t). This
means that thenth car may become the neighbor of the c
ahead if the car in front stops. Stochastic delay is introdu
in such a way that all the cars which follow the trail of the
cars ahead have a probabilityf to move forward one site les
than it is allowed by step 1, i.e., we have the following.

Step 2: vn(t)5vn8(t)21, with the probabilityf, if vn8(t)
5Cn(t) andvn8(t).0.

Step 3: The nth car movesvn(t) sites ahead.
The number of empty sites in front of thenth car at time

t11 can be written as

Cn~ t11!5Cn~ t !1vn11~ t !2vn~ t ! . ~1!

For our model, with a maximum car velocityvmax5M and a
stochastic delay probabilityf, the velocity of thenth car at
time stept as a function of the intercar spacingCn(t) can be
written as

vn~ t !5FM@ f ,Cn~ t !# ~2!

where

FM~ f ,C!

55
M

C21

C

0

with probability f

with probability 12 f
J

if C.M

if 0 ,C<M

if C50.

~3!
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III. INTERCAR SPACINGS IN THE STEADY STATES

From Eqs.~1!–~3!, we can derive the properties of th
intercar spacings in the steady states. GivenCn(t)<M11,
it follows that Cn(t)2FM@Cn(t)#<1, and from
FM@Cn11(t)#<M , we obtain Cn(t11)5Cn(t)
2FM@Cn(t)#1FM@Cn11(t)#<M11. Therefore, if an inter-
car spacing is not larger thanM11, it will not be larger than
M11 as the system evolves.

GivenCn(t)>M11, it follows thatFM@Cn(t)#5M , and
from FM@Cn11(t)#<M we have Cn(t11)5Cn(t)
2FM@Cn(t)#1FM@Cn11(t)#<Cn(t). Therefore, intercar
spacings which are larger than or equal toM11 will never
increase, i.e., ifCn(t)>M11, thenCn11(t)<Cn(t).

It is useful to define the long and short intercar spacin
via their comparison with the maximum car speedM. An
intercar spacing is called a long spacing if it is longer th
M11, i.e., Cn(t).M11. An intercar spacing is called
short spacing if it is shorter thanM11, i.e.,Cn(t),M11.
Based on the above definitions, we can define the exces
length of a long spacingLn(t) and the deficient length of a
short spacingSn(t) as

Ln~ t !5max@Cn~ t !2~M11!,0#

and

Sn~ t !5max@~M11!2Cn~ t !,0#.

It follows that the sum of the excessive lengths of all lo
spacingsL(t) and the sum of deficient lengths of all sho
spacingsS(t) are given, respectively, by

L~ t !5(
n

Ln~ t !, S~ t !5(
n

Sn~ t ! .

From these definitions, it can be proven readily that

L~ t !2S~ t !5(
n

@Cn~ t !2~M11!#5L2~M12!5const.

~4!

From these properties of the intercar spacings, we h
Ln(t11)<Ln(t). Hence

L~ t11!<L~ t !. ~5!

From Eqs.~4! and~5!, we haveS(t11)<S(t). Therefore,L
andSwill never increase as the system evolves. If one of
Ln decreases, thenL andS will have to decrease.

Next we look into the question of whether long and sh
spacings may coexist in an asymptotic steady state. LetNi(t)
be the number of intercar spacings with lengthi at time t.
The probability of finding such a spacing at timet is Pi(t)
5Ni(t)/N. Hereafter,Pi(t) is denoted byPi for simplicity,
except if specified otherwise. Suppose that long and s
spacings coexist. Consider a long spacing; if the car ah
moves forward bym21 sites, then the spacing will decrea
by 1. The probability for this to occur is (12 f )PM21
1 f PM . For the same reason, the probability for the spac
to be shortened by 2 is (12 f )PM221 f PM21, and the prob-
05611
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ability for the spacing to be shortened by 3 is (12 f )PM23
1 f PM22, and so on. The probability for the spacing to
shortened byM21 is (12 f )P11 f P2, and the probability
for the spacing to be shortened byM is P01 f P1. On aver-
age, a long spacing will be shortened by

M P01 (
i 51

M21

@~12 f !~M2 i !1 f ~M2 i 11!#Pi1 f PM

5M P01 (
i 51

M21

~M2 i 1 f !Pi1 f PM ~6!

in one time step. The shortened length is positive, unl
P05P15P25•••PM215PM50, i.e., S50. Therefore, in
the asymptotic steady state of the system,L and S will no
longer change, and at least one of them becomes z
Hence, it is not possible for long and short spacings to
exist in the asymptotic steady state.

IV. ANALYTICAL SOLUTION OF ASYMPTOTIC
VELOCITY

For the low-car-density case@r,1/(M12)#, it is appar-
ent that in the asymptotic steady state,L.0 and S50.
Hence

Cn~ t !>M11, ; n. ~7!

In this case, stochastic delay will no longer occur, and all
cars will move forward with a maximum speedM. The av-
erage car speed of traffic flow is

^V~ t→`!&5M . ~8!

For the high-car-density case@r.1/(M12)#, it is appar-
ent that in the asymptotic steady stateS.0 andL50. Hence

Cn~ t !<M11, ; n. ~9!

The length of every intercar spacing cannot be larger t
M11. Therefore, the average speed of traffic flow in t
asymptotic steady state is

^V~ t→`!&5(
i 51

M

Pi@ i ~12 f !1~ i 21! f #1M PM11

5(
i 51

M

Pi~ i 2 f !1M PM11 ~10!

A. vmaxÄMÄ1

In this case, the high density case refers tor>1/3, and
hencePn50, ; n>3. This implies that onlyP0 , P1, andP2
are nonzero. To obtain the nonvanishingPj , we introduce
Ni→ j to describe the number of intercar spacings with
change in length fromi at time t to j at time t11. The
probability of finding an intercar spacing with lengthi at
time t and lengthj at time t11 is

Wi→ j~ t ![Ni→ j~ t !/N. ~11!
7-2
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From Eqs.~1!–~3!, we can write all the nonzeroWi→ j as

W0→15P0@~12 f !P11P2#,

W0→250,

W1→05P1@~12 f !P01 f ~12 f !P1#,

W1→25P1@ f ~12 f !P11 f P2#,

W2→050,

W2→15P2~P01 f P1!.

For u i 2 j u>3, Wi→ j50.
When the system approaches its asymptotic steady s

all the Pj is cease to change. So the following detailed b
ance condition for the steady state holds:

(
iÞm

Wi→m5 (
iÞm

Wm→ i , ; m. ~12!

When m is equal to 0, 1, and 2, three detailed balan
equations can be written as

W0→11W0→25W1→01W2→0 ,

W1→01W1→25W0→11W2→1 ,

W2→01W2→15W0→21W1→2 .
05611
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Substituting the expressions forWi→ j into the above three
equations, we obtain

P0P25 f ~12 f !P1
2 . ~13!

Normalization requires thatP0 , P1, andP2 satisfy the equa-
tions

(
i

Pi5P01P11P251 ~14!

and

(
i

iPi5P112P25C̄51/r21. ~15!

From Eqs.~13!–~15!, we obtain a quadratic equation fo
P0,

~2 f 21!2P0
21@~2 f 21!2~C̄22!11#P02 f ~12 f !~C̄22!2

50, ~16!

with its root given by

P05
2@~2 f 21!2~C̄22!11#1A~2 f 21!2~C̄22!C̄11

2~2 f 21!2
.

~17!

Hence, the asymptotic average speed of traffic flow is
^V~ t→`!&5

C̄1
1

2 f 21
@A~2 f 21!2~C̄22!C̄1121#

2

5
1

2
S

211
1

r
1

211A11
~2 f 21!2~r21!~3r21!

r2

2 f 21
D . ~18!
For f 51/2, which is an removable singular point,

^V~ t→`!&5C̄/25~1/r21!/2. ~19!

Equations~18! and~19! give the asymptotiĉV(t→`)& as a
function of f andr in the high density case withM51.

B. vmaxÄMÄ2

In this case,r>1/4, hencePn50, ; n>4. This implies
that only P0 , P1 , P2, andP3 are nonzero. From Eqs.~1!–
~3!, we can write the nonzeroWi→ j as

W0→15P0@~12 f !P11 f P2#,

W0→25P0@~12 f !P21P3#,
W0→350,

W1→05P1@~12 f !P01 f ~12 f !P1#,

W1→25P1$ f ~12 f !P11@ f 21~12 f !2#P21~12 f !P3%,

W1→35P1@~12 f !P21 f P3#,

W2→05P2@~12 f !P01 f ~12 f !P1#,

W2→15P2$ f P01@ f 21~12 f !2#P11~12 f !P2%,

W2→35P2@ f ~12 f !P21 f P3#,

W3→050,
7-3
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W3→15P3~P01 f P1!,

W3→25P3@~12 f !P11 f P2#.

Substituting the above expressions into the detailed bala
condition in Eq.~12!, we obtain the following set of four
equations:

f P0P21P0P32 f ~12 f !P1
22 f ~12 f !P1P250, ~20!

2 f P0P21P0P322 f ~12 f !P1
22 f ~12 f !P1P2

2~12 f !P1P31 f ~12 f !P2
250, ~21!

f P0P22P0P32 f ~12 f !P1
21 f ~12 f !P1P222~12 f !P1P3

12 f ~12 f !P2
250, ~22!

P0P32 f ~12 f !P1P21~12 f !P1P32 f ~12 f !P2
250.

~23!

Note that only two of these, e.g., Eqs.~20! and ~23!, are
independent. Combining Eqs.~20! and~23! with the normal-
ization conditions

(
i

Pi5P01P11P21P351 ~24!

and

(
i

iPi5P112P213P35C̄51/r21, ~25!

FIG. 1. The fundamental diagram with the maximum car vel
ity M51 and for different stochastic delay probabilitiesf. The solid
curves are theoretical results. The points with different symb
represent results of numerical simulations. The curves from the
down along the velocity axis correspond to different values of
ranging fromf 50 to 1, in steps of 0.1.
05611
ce

we can solve forP0 , P1 , P2, and P3, and obtain the
asymptotic traffic flow velocity forM52.

V. DISCUSSION

In order to compare with the analytical results, we carr
out numerical simulations on a 1D chain with 1000 cars. T
length of the chain was adjusted so as to give the desired
density. Periodic boundary condition was imposed. The fi
20000 time steps were excluded from the averaging pro
dure so as to remove the transient behavior. The avera
were taken over the next 80000 time steps. Figures 1 an
show a comparison between results obtained from nume
simulations and our mean field theory for the cases ofM
51 and 2 over the entire range of densityr. The curves are
theoretical results, while the symbols represent results of
merical simulations. The curves from the top down along
velocity axis correspond to different values off ranging from
0 to 1. Excellent agreement between simulations and
theory is found.

From the fundamental diagrams of our model, it is not
that when the car density is low enough@r<1/(M12)#, all
the intercar spacings will not be shorter thanM11, and all
the cars will not be delayed, leading to traffic flow in i
maximum velocity (V5M ). This situation is more realistic
in that, in real traffic, no driver would tend to slow down h
car when it is far away from the car ahead. In the hi
density case, the stochastic delay in our model repres
better safety than that of the FI model, and leads to a m
higher asymptotic average velocity of traffic flow than that
the NS model.

In summary, we introduced a model with stochastic d
lays for cars following the trail of the car ahead. Its evoluti

-

ls
p

FIG. 2. The fundamental diagram with the maximum car velo
ity M52 and for different stochastic delay probabilitiesf. The solid
curves are theoretical results. The points with different symb
represent numerical simulations. The curves from the top do
along the velocity axis correspond to different values off ranging
from f 50 to 1 in steps of 0.1.
7-4
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and fundamental diagram are quite different from the NS
FI models, even in the simplest case ofM51. We studied
the evolution of the intercar spacings, and obtained its f
damental diagram by an analytical COMF approach. T
results show an exact agreement between nume
simulations and our theory.

The analysis of the dynamical evolution of o
model may give us a clearer physical picture of how
acceleration and stochastic delay rules affect the evolu
and the corresponding asymptotic steady state. It will a
provide us with better ideas on developing analyti
approaches to other traffic flow CA models such as the
model, for which no exact analytical approach has be
established.
a
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